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Executive Summary

The western U.S. has millions of acres of overstocked forestlands at risk of large, uncharacteristically severe or
catastrophic wildfire owing to a variety of factors, including anthropogenic changes from nearly a century of
timber harvest, grazing, and particularly fire suppression. Various methods for fuel treatment intended to
modify or reduce fire severity include mastication or removal of sub-merchantable timber and understory
biomass, pre-commercial and commercial timber harvest, and prescribed fire. Mechanisms for cost recovery
of fuel treatments are not well established, and return on investment comes primarily in the form of avoided
wildfire. While the benefits of fuel treatments in reducing effects of wildfire are clear and well-documented in
the scientific literature, the absolute probability of wildfire impacting fuel treatments or nearby areas within
their effective lifespan are difficult to account for with certainty and are variable across the landscape. As
market-based approaches to global climate change are being considered and implemented, one important
emerging strategy for changing the economics of fuels treatments is to carbon emission offset credits for
activities that reduce greenhouse gas emissions beyond what is required by existing permits or rules. Carbon
emission offsets can theoretically be generated by projects that reduce potential emissions from wildfire, as by
reducing effects of wildfire for a given portion of land. Development of carbon emission offsets as an effective
tool for forest and fire mangers requires an integrated approach that considers wildfire probabilities and
expected emissions, as well as net expected carbon sequestration or loss over time.

To assist the United States Forest Service (USFS) and Placer County in establishing a rigorous approach for
evaluating the potential for carbon emission offsets from fuel treatment projects, Spatial Informatics Group, in
conjunction with the University of California, has developed a framework that integrates scientifically based
models for predicting changes in fire behavior and related emissions, both with and without hazardous fuel
treatments. Major elements of the methodology include characterizing firesheds and their elements,
estimating forest stock and growth, quantifying the life cycle of forest carbon wood products, assessing the risk
of fire to the fireshed, determining direct wildfire emissions, quantifying the effect of treatments on wildfire
emissions outside their boundaries, and calculating net GHG benefits or liabilities resulting from treatments.

Using the carbon emission offset framework in a case study of the Last Chance area, we demonstrated that:

e Fuel treatments had significant impacts on potential wildfire emissions, both direct (emissions from
within the treatments themselves) and indirect (in the form of reduced expected fire size).

e The effects of treatment on fire size deteriorated over time. To a certain point (i.e. the effective life
span of the treatments), these effects had an important impact on avoided emissions, at least for the
“thin from below” treatments (Alt-SNAMP and USFS-Standard).

e GHG storage and offsets from wood products and biomass energy production created significant GHG
benefits, but even in the most intensive management scenario (Private-Harvest) were never more than
50% of the net GHG deficit created by biomass removal in fuel treatments. The remaining deficit had
to be offset by avoided wildfire emissions in order to create a net GHG benefit at any time step.

o Avoided wildfire emissions (and thus net GHG benefits or liabilities) were highly sensitive to the
probability of wildfire and the form of its application (e.g. constant or variable).

e Net GHG benefits were only realized when the probability of wildfire was high (15 year expected
return interval), and only for the thin-from-below treatments (Alt-SNAMP and USFS-Standard).
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e The “Private Harvest” scenario based on commercial harvest of trees up to 30 inches in diameter with
a minimum retained basal area of 75 ft?/acre (Table 3) realized no net GHG benefit at any point in the
study period, using any expected fire frequency or risk model. Though there was a significant and long
lasting effect on fire behavior, avoided emissions were never enough to compensate for removal of
large amounts of stored carbon during treatment.

e Balancing the goals of carbon sequestration and forest resiliency to fire may require optimizing
treatments to maximize fire behavior reduction, retention of large fire resistant trees, longevity of
treatment effectiveness, timing of long-term follow up treatments, and wood product and biomass
offsets.

e This study helps provide insights into landscape scale GHG benefits associated with managing forests
for fire hazard and risk reduction.

e While GHG emissions are a current area of focus within forest management, interpretation of findings
from this study should be considered within the framework of findings from previously published
studies that have quantified additional ecosystem co-benefits of reducing stand density, actively
restoring forest structure, and reintroducing fire as an ecosystem process at a landscape scale.
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Introduction

The western U.S. has millions of acres of overstocked forestlands at risk of large, uncharacteristically severe or
catastrophic wildfire owing to a variety of factors, including anthropogenic changes from nearly a century of
timber harvest, grazing, and particularly fire suppression (Miller et al. 2009). Modification of fuel structures
and reduction of unnaturally high fuel loads in order to alter fire patterns and behavior are a primary
component of planning efforts such as the National Cohesive Wildland Fire Management Strategy (Wildland
Fire Leadership Council 2011) and the Sierra Nevada Forest Plan Amendment (USDA Forest Service 2001), and
are likely to continue or increase into the future in response to climate change and the resulting changes in fire
and fuels. Various methods for fuel modification, collectively termed “fuel treatments,” include mastication or
removal of sub-merchantable timber and understory biomass, pre-commercial and commercial timber harvest,
and prescribed fire. Cost per unit area for fuel treatments varies by treatment method and vegetation type
(Hartsough et al. 2008), but complete treatment of vast areas of at-risk wild lands is neither financially feasible
nor logistically realistic, or even desirable under certain land management objectives. Mechanisms for cost
recovery of fuel treatments are not well established, and return on investment comes primarily in the form of
avoided wildfire, though the absolute probability of wildfire impacting fuel treatments or nearby areas within
their effective lifespan can be relatively low and variable across the landscape (Hurteau et al. 2009, Ager et al.
201043, Syphard et al. 2011).

Various strategies are emerging to deal with fuel treatment cost. Given limited resources and the inability to
treat every at-risk acre, treatments can be strategically arranged on the landscape in order to increase their
effectiveness in protecting communities within the wildland urban interface (WUI) and natural resources,
changing expected fire effects, and aiding fire suppression efforts, which can reduce overall fire sizes (Ager et
al. 2007a, Ager et al. 2007b, Moghaddas et al. 2010). Additionally, forest woody biomass removed in fuel
treatments can be used for higher value purposes and products, such as electricity and heat, transportation
fuels (e.g., advanced biofuels), chemicals, and physical products used directly in many activities and industries
(e.g. bioplastics, ash, glass aggregates). The federal interagency Biomass Research and Development Technical
Advisory Committee, created to support the Biomass R&D act of 2000, has set goals of increasing the market
share of biopower to 7.0% (3.8 quadrillion Btu) by 2030 (Biomass Research Development Technical Advisory
Committee 2006). However, while the market for woody biomass may be expanding, it still faces significant
hurdles, such as limited access to funding, distance between forest treatment and biomass utilization facilities,
public perception of the effects of biomass removal, and scientific documentation to support the sustainability
of these activities (Evans 2008).

As market-based approaches to global climate change are being considered and implemented, one important
emerging strategy for changing the economics of fuels treatments is to sell carbon emission offsets , tradable
certificates or permits representing the right to emit a designated amount of carbon dioxide or other
greenhouse gasses (GHGs). These offsets are generated when projects or actions reduce GHG emissions
beyond what is required by permits and rules, and can be traded, leased, banked for future use, or sold to
other entities that need to provide emission offsets (Sedjo and Marland 2003). In the case of fuel treatments,
carbon emission offsets can theoretically be generated by projects that reduce potential emissions from
wildfire, as by modifying the probability of extreme fire behavior for a given portion of land. In 2006, the
California legislature enacted Assembly Bill 32: The Global Warming Solutions Act (AB32), setting emissions

»
) A
T‘s I G Page 11



goals for 2020 and directing the Air Resources Board to develop reduction measures to meet targets (State of
California 2006). Forest management (including fuel treatments) is one area that has been targeted for project
based offset development. The EPA and those agencies implementing AB32 require that carbon emission
offsets be quantifiable, real, permanent, enforceable, verifiable, and surplus.

Development of carbon emission offsets as an effective tool for forest and fire mangers therefore requires an
integrated approach that considers wildfire probabilities and expected emissions, as well as net expected
carbon sequestration or loss over time. Western forests have the potential to sequester large amounts of
carbon in the form of woody biomass, but increased forest densities and understory growth can also increase
fire hazard (Stephens et al. 2009a). Fuel treatments intended to reduce the risk of severe wildfire and
associated emissions by definition remove live and dead woody biomass available for burning, thereby
reducing stored carbon. Fuel treatment operations themselves can also result in direct and delayed
atmospheric carbon emissions, as with biomass transportation and prescribed broadcast or pile burning.
Several recent studies have investigated the seemingly competing values of carbon sequestration and fuel
treatment, examining whether and to what extent reduced carbon sequestration from treatment is mitigated
by avoided emissions (Hurteau and North 2009, North et al. 2009, Stephens et al. 2009b, Ager et al. 2010a,
Reinhardt and Holsinger 2010).

The United States Forest Service (USFS) is the largest manager of forested land in the Sierra Nevada Mountains
of California, and is aggressively pursuing means to reduce the costs of fuels treatments, demonstrate their
multiple benefits, and enable markets for carbon sequestration and other ecosystem services based on such
treatments. USFS Region Five (R5) and Pacific Southwest Research Station (PSW) have coordinated on a
number of fronts over the past several years to develop strategies to manage the substantial flow of wood
waste from fuels reduction treatments. The PSW Sierra Nevada Ecosystems Research Initiative (formerly
known as the Sierra Nevada Research Center — RWU-4202) investigates landscape level impacts of ecological
disturbance and change through multiple disciplines, including wildlife ecology, fire sci